हिंदी

Given that sin θ = ab then cos θ is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Given that sin θ = `a/b` then cos θ is equal to ______.

विकल्प

  • `b/sqrt(b^2 - a^2)`

  • `b/a`

  • `sqrt(b^2 - a^2)/b`

  • `a/sqrt(b^2 - a^2)`

MCQ
रिक्त स्थान भरें

उत्तर

Given that sin θ = `"a"/"b"` then cos θ is equal to `underlinebb(sqrt(("b"^2 - "a"^2)/"b")`.

Explanation:

According to the question,

sin θ = `"a"/"b"`

We know, sin2 θ + cos2 θ = 1

sin2 A = 1 – cos2 A

sin A = `sqrt(1 - cos^2 "A")`

So, cos θ = `sqrt(1 - "a"^2/"b"^2)`

= `sqrt(("b"^2 - "a"^2)/"b"^2)`

= `sqrt(("b"^2 - "a"^2))/"b"`

Hence, cos θ = `sqrt(("b"^2 - "a"^2)/"b"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2023-2024 (March) Standard (Board Sample Paper)

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate without using trigonometric tables, 

`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)` 

[Hint: Simplify LHS and RHS separately.] 


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`


Without using trigonometric tables, evaluate :

`tan 27^circ/cot 63^circ`


Without using trigonometric tables, prove that:

tan266° − cot224° = 0


Prove that:

sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1


Prove that:

\[\frac{\sin\theta  \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta  \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]


Prove that:

\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]


Prove that:

\[\frac{sin\theta  \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


Prove that:

cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]


If A, B  and C are the angles of a  ΔABC, prove that tan `((C + "A")/2) = cot  B/2`


If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.


Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`


Prove the following:

`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`


Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.


Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.


Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'


Prove that:

`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×