Advertisements
Advertisements
प्रश्न
Prove that:
cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]
उत्तर
\[\left( ii \right) LHS = \cot12° \cot38° \cot52 \cot60°\cot78° \]
\[ = \tan\left( 90° - 12° \right) \times \tan\left( 90° - 38\° \right) \times \cot52° \times \frac{1}{\sqrt{3}} \times \cot78° \]
\[ = \frac{1}{\sqrt{3}} \times \tan78° \times \tan52° \times \cot52° \times \cot78° \]
\[ = \frac{1}{\sqrt{3}} \times \tan78° \times \tan52° \times \frac{1}{\tan52t° } \times \frac{1}{\tan78° }\]
\[ = \frac{1}{\sqrt{3}}\]
= RHS
APPEARS IN
संबंधित प्रश्न
Evaluate without using trigonometric tables,
`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)`
[Hint: Simplify LHS and RHS separately.]
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
Without using trigonometric tables, evaluate :
`sec 11^circ/("cosec" 79^circ)`
Without using trigonometric tables, evaluate :
`cos 35^circ/sin 55^circ`
Without using trigonometric tables, evaluate :
`cot 38^circ/tan 52^circ`
Without using trigonometric tables, prove that:
cos257° − sin233° = 0
Without using trigonometric tables, prove that:
(sin72° + cos18°)(sin72° − cos18°) = 0
Without using trigonometric tables, prove that:
tan48° tan23° tan42° tan67° = 1
Prove that:
`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2 cos 70^circ "cosec" 20^circ = 0`
Prove that:
\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]
Prove that:
cos1° cos2° cos3° ... cos180° = 0
If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.
Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.
Solve : Sin2θ - 3sin θ + 2 = 0 .
From the trigonometric table, write the values of cos 23°17'.
Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.
`(sin 40° + cos 50°)/(tan 38°20')`
If sin θ = 1, then the value of `1/2 sin(theta/2)`is ______.