हिंदी

Prove That: Cot12° Cot38° Cot52° Cot60° Cot78° = 1 √ 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]

योग

उत्तर

\[\left( ii \right) LHS = \cot12° \cot38°  \cot52 \cot60°\cot78° \]

\[ = \tan\left( 90° - 12°  \right) \times \tan\left( 90° - 38\° \right) \times \cot52° \times \frac{1}{\sqrt{3}} \times \cot78° \] 

\[ = \frac{1}{\sqrt{3}} \times \tan78° \times \tan52° \times \cot52° \times \cot78° \]

\[ = \frac{1}{\sqrt{3}} \times \tan78° \times \tan52° \times \frac{1}{\tan52t° } \times \frac{1}{\tan78° }\]

\[ = \frac{1}{\sqrt{3}}\]

= RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१३]

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 6.2 | पृष्ठ ३१३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate without using trigonometric tables, 

`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)` 

[Hint: Simplify LHS and RHS separately.] 


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`


Without using trigonometric tables, evaluate :

`sec 11^circ/("cosec"  79^circ)`


Without using trigonometric tables, evaluate :

`cos 35^circ/sin 55^circ`


Without using trigonometric tables, evaluate :

`cot 38^circ/tan 52^circ`


Without using trigonometric tables, prove that:

cos257° − sin233° = 0


Without using trigonometric tables, prove that:

(sin72° + cos18°)(sin72° − cos18°) = 0


Without using trigonometric tables, prove that:

tan48° tan23° tan42° tan67° = 1


Prove that:

`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2  cos 70^circ "cosec"  20^circ = 0`


Prove that:

\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]


Prove that:

cos1° cos2° cos3° ... cos180° = 0


If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.


Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.


Solve : Sin2θ - 3sin θ + 2 = 0 .


From the trigonometric table, write the values of cos 23°17'.


Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.


`(sin 40° + cos 50°)/(tan 38°20')`


If sin θ = 1, then the value of `1/2  sin(theta/2)`is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×