हिंदी

Without Using Trigonometric Tables, Evaluate : Sec 11 ∘ Cosec 79 ∘ - Mathematics

Advertisements
Advertisements

प्रश्न

Without using trigonometric tables, evaluate :

`sec 11^circ/("cosec"  79^circ)`

योग

उत्तर

`sec 11^circ/("cosec"  79^circ)`

= `sec (90^circ - 79^circ)/("cosec"  79^circ)`

= `("cosec"  79^circ)/("cosec"  79^circ)`   [`because sec  (90 - theta) = "cosec"  theta`]

= 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१२]

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 1.2 | पृष्ठ ३१२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)` 

[Hint: Simplify LHS and RHS separately.] 


Without using trigonometric tables, evaluate :

`cos 35^circ/sin 55^circ`


Without using trigonometric tables, prove that:

cosec 80° − sec 10° = 0


Without using trigonometric tables, prove that:

tan266° − cot224° = 0


Without using trigonometric tables, prove that:

sin248° + sin242° = 1


Without using trigonometric tables, prove that:

sin53° cos37° + cos53° sin37° = 1


Prove that:

sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1


Prove that:

\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]


Prove that:

\[\frac{sin\theta  \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


Prove that:

cos1° cos2° cos3° ... cos180° = 0


\[\frac{2}{3} {cosec}^2 58^\circ- \frac{2}{3}\cot58^\circ \tan32^\circ - \frac{5}{3}\tan13^\circ \tan37^\circ\tan45^\circ\tan53^\circ\tan77^\circ = - 1\]

Prove the following:

`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`


Solve : Sin2θ - 3sin θ + 2 = 0 .


If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`


Using trigonometric table evaluate the following:
cos 64°42' - sin 42°20'


Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'


The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.


Given that sin θ = `a/b` then cos θ is equal to ______.


The maximum value of `1/(cosec alpha)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×