Advertisements
Advertisements
प्रश्न
Solve : Sin2θ - 3sin θ + 2 = 0 .
उत्तर
sin2θ - 3sin θ + 2 = 0
⇒ sin2θ - 2sin θ - sin θ + 2 = 0
⇒ sin θ (sin θ - 2) - 1(sin θ - 2) = 0
⇒ (sin θ - 2)(sin θ - 1) = 0
⇒ sin θ - 2 = 0
⇒ sin θ = 2
sin θ = 2 has no solution for angle θ, as there is no any angle whose sin θ is equal to 2.
⇒ sin θ - 1 = 0
⇒ sin θ = 1
⇒ θ = 90°
APPEARS IN
संबंधित प्रश्न
In the below given figure, a tower AB is 20 m high and BC, its shadow on the ground, is 20√3 m long. Find the sun’s altitude.
Evaluate without using trigonometric tables,
`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`
Without using trigonometric tables, evaluate
`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`
Without using trigonometric tables, prove that:
cos 81° − sin 9° = 0
Without using trigonometric tables, prove that:
cos275° + cos215° = 1
Without using trigonometric tables, prove that:
sin35° sin55° − cos35° cos55° = 0
Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.
From the trigonometric table, write the values of cos 23°17'.
Using trigonometric table evaluate the following:
cos 64°42' - sin 42°20'
If sin θ = 1, then the value of `1/2 sin(theta/2)`is ______.