Advertisements
Advertisements
प्रश्न
Solve : Sin2θ - 3sin θ + 2 = 0 .
उत्तर
sin2θ - 3sin θ + 2 = 0
⇒ sin2θ - 2sin θ - sin θ + 2 = 0
⇒ sin θ (sin θ - 2) - 1(sin θ - 2) = 0
⇒ (sin θ - 2)(sin θ - 1) = 0
⇒ sin θ - 2 = 0
⇒ sin θ = 2
sin θ = 2 has no solution for angle θ, as there is no any angle whose sin θ is equal to 2.
⇒ sin θ - 1 = 0
⇒ sin θ = 1
⇒ θ = 90°
APPEARS IN
संबंधित प्रश्न
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)`
[Hint: Simplify LHS and RHS separately.]
Without using trigonometric tables, evaluate :
`cot 38^circ/tan 52^circ`
Prove that:
`(2 "sin" 68^circ)/(cos 10^circ )- (2 cot 15^circ)/(5 tan 75^circ) = ((3 tan 45^circ t an 20^circ tan 40^circ tan 50^circ tan 70^circ)) /5= 1`
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
Prove the following:
`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`
Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.
Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'
Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'