मराठी

Prove That: 2 Sin 68 ∘ Cos 10 ∘ − 2 Cot 15 ∘ 5 Tan 75 ∘ = ( 3 Tan 45 ∘ T a N 20 ∘ Tan 40 ∘ Tan 50 ∘ Tan 70 ∘ ) 5 = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

`(2  "sin"  68^circ)/(cos 10^circ )- (2  cot 15^circ)/(5 tan 75^circ) = ((3  tan 45^circ t  an 20^circ  tan 40^circ tan 50^circ tan 70^circ)) /5= 1` 

बेरीज

उत्तर

LHS = `(2  "sin"  68^circ)/(cos 10^circ )- (2  cot 15^circ)/(5  tan 75^circ) = ((3  tan 45^circ tan 20^circ  tan 40^circ tan 50^circ tan 70^circ)) /5`

`=(2 sin 68^circ)/sin(90^circ - 22^circ) - (2  cot 15^circ)/(5 cot (90^circ - 75^circ)) - 3xx1xxcot(90^circ-20^circ)xxcot(90^circ-40^circ)xxtan 50^circxxtan 70^circ`

`= 2 - 2/5 = (3xx1/(tan 70^circ)xx1/(tan 50)^circxxtan 70^circ )/5`

`= 2 - 2/5 = 3/5`

`=( 10 - 2 - 3)/5`

`= 5/5`

 = 1

= RHS 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१३]

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 4.3 | पृष्ठ ३१३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Without using trigonometrical tables, evaluate:

`cosec^2 57^circ - tan^2 33^circ + cos 44^circ cosec 46^circ - sqrt(2) cos 45^circ - tan^2 60^circ`


Without using trigonometric tables, evaluate 

`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`


Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`


Without using trigonometric tables, evaluate :

`("cosec"  42^circ)/sec 48^circ`


Without using trigonometric tables, prove that:

cos 81° − sin 9° = 0


Without using trigonometric tables, prove that:

cosec272° − tan218° = 1


Without using trigonometric tables, prove that:

(sin 65° + cos 25°)(sin 65° − cos 25°) = 0


Prove that:

\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]


\[\frac{2}{3} {cosec}^2 58^\circ- \frac{2}{3}\cot58^\circ \tan32^\circ - \frac{5}{3}\tan13^\circ \tan37^\circ\tan45^\circ\tan53^\circ\tan77^\circ = - 1\]

Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`


From the trigonometric table, write the values of cos 23°17'.


Using trigonometric table evaluate the following:
cos 64°42' - sin 42°20'


Given that sin θ = `a/b` then cos θ is equal to ______.


Prove that:

`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×