Advertisements
Advertisements
प्रश्न
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
उत्तर
\[\begin{array}{l}sin3A = \cos(A =- {26}^\circ ) \\ \end{array}\]
\[\begin{array}{l}\Rightarrow cos( {90}^\circ - 3A) = \cos(A-{26}^\circ )[ \because \sin\theta = \cos( {90}^\circ - \theta)] \\ \end{array}\]
\[\begin{array}{l}\Rightarrow {90}^\circ - 3A = A - {26}^\circ \\ \end{array}\]
\[\begin{array}{l}\Rightarrow {116}^\circ = 4A \\ \end{array}\]
\[ \Rightarrow A = \frac{{116}^\circ}{4} = {29}^\circ \]
APPEARS IN
संबंधित प्रश्न
Evaluate without using trigonometric tables,
`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)`
[Hint: Simplify LHS and RHS separately.]
Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`
Without using trigonometric tables, evaluate :
`tan 27^circ/cot 63^circ`
Without using trigonometric tables, prove that:
tan266° − cot224° = 0
Without using trigonometric tables, prove that:
(sin72° + cos18°)(sin72° − cos18°) = 0
Prove that:
sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1
If A, B and C are the angles of a ΔABC, prove that tan `((C + "A")/2) = cot B/2`
If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.
Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`
Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).
Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.
The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.
Given that sin θ = `a/b` then cos θ is equal to ______.
Prove that:
`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A