Advertisements
Advertisements
प्रश्न
Without using trigonometric tables, prove that:
(sin72° + cos18°)(sin72° − cos18°) = 0
उत्तर
LHS=(sin72°+cos18°)(sin72°−cos18°)
=(sin72°+cos18°)[cos(90°−72°)−cos18°]
=(sin72°+cos18°)(cos18°−cos18°)
=(sin72°+cos18°)(0)
=0
=RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
Without using trigonometric tables, evaluate :
`tan 27^circ/cot 63^circ`
Without using trigonometric tables, evaluate :
`cot 38^circ/tan 52^circ`
Without using trigonometric tables, prove that:
cosec 80° − sec 10° = 0
Without using trigonometric tables, prove that:
cos275° + cos215° = 1
Without using trigonometric tables, prove that:
sin248° + sin242° = 1
Without using trigonometric tables, prove that:
sin53° cos37° + cos53° sin37° = 1
Without using trigonometric tables, prove that:
sin35° sin55° − cos35° cos55° = 0
Prove that:
cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]
If A, B and C are the angles of a ΔABC, prove that tan `((C + "A")/2) = cot B/2`
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`
A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]
Solve : Sin2θ - 3sin θ + 2 = 0 .
Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.
The maximum value of `1/(cosec alpha)` is ______.
If sin θ = 1, then the value of `1/2 sin(theta/2)`is ______.