मराठी

Without Using Trigonometric Tables, Prove That: - Mathematics

Advertisements
Advertisements

प्रश्न

Without using trigonometric tables, prove that:

(sin72° + cos18°)(sin72° − cos18°) = 0

बेरीज

उत्तर

LHS=(sin72°+cos18°)(sin72°cos18°)

=(sin72°+cos18°)[cos(90°72°)cos18°]

=(sin72°+cos18°)(cos18°cos18°)

=(sin72°+cos18°)(0)

=0

=RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१३]

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 3.5 | पृष्ठ ३१३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`


Without using trigonometric tables, evaluate :

`tan 27^circ/cot 63^circ`


Without using trigonometric tables, evaluate :

`cot 38^circ/tan 52^circ`


Without using trigonometric tables, prove that:

cosec 80° − sec 10° = 0


Without using trigonometric tables, prove that:

cos275° + cos215° = 1


Without using trigonometric tables, prove that:

sin248° + sin242° = 1


Without using trigonometric tables, prove that:

sin53° cos37° + cos53° sin37° = 1


Without using trigonometric tables, prove that:

sin35° sin55° − cos35° cos55° = 0


Prove that:

cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]


If A, B  and C are the angles of a  ΔABC, prove that tan `((C + "A")/2) = cot  B/2`


If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.


\[\frac{2}{3} {cosec}^2 58^\circ- \frac{2}{3}\cot58^\circ \tan32^\circ - \frac{5}{3}\tan13^\circ \tan37^\circ\tan45^\circ\tan53^\circ\tan77^\circ = - 1\]

Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`


A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]


Solve : Sin2θ - 3sin θ + 2 = 0 .


Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.


The maximum value of `1/(cosec alpha)` is ______.


If sin θ = 1, then the value of `1/2  sin(theta/2)`is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×