मराठी

Without Using Trigonometric Tables, Prove That: Sin35° Sin55° − Cos35° Cos55° = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Without using trigonometric tables, prove that:

sin35° sin55° − cos35° cos55° = 0

बेरीज

उत्तर

LHS=sin35° sin55°cos35° cos55°

=sin35° cos(90°55°)cos35° sin(9055°)

=sin35° cos35°cos35° sin35°

=0

=RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१३]

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 3.4 | पृष्ठ ३१३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

In the below given figure, a tower AB is 20 m high and BC, its shadow on the ground, is 20√3 m long. Find the sun’s altitude. 


Without using trigonometric tables, evaluate 

`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)` 

[Hint: Simplify LHS and RHS separately.] 


Without using trigonometric tables, prove that:

cos 81° − sin 9° = 0


Without using trigonometric tables, prove that:

cos257° − sin233° = 0


Without using trigonometric tables, prove that:

sin53° cos37° + cos53° sin37° = 1


Prove that:

sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1


Prove that:

\[\frac{\sin\theta  \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta  \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]


Prove that:

\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]


If A, B  and C are the angles of a  ΔABC, prove that tan `((C + "A")/2) = cot  B/2`


If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.


Given that `tan (θ_1 + θ_2) = (tan θ_1 + tan θ_2)/(1 - tan θ_1 tan θ_2)` Find (θ1 + θ2) when tan θ1 = `1/2 and tan θ_2 = 1/3`.


Solve : Sin2θ - 3sin θ + 2 = 0 .


From the trigonometric table, write the values of cos 23°17'.


Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.


Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'


Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'


`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`


Prove that:

`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×