मराठी

Prove the following: 1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following:

`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`

बेरीज

उत्तर

`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta)`

` = 1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+1/(cos^2theta)) + 1/(1+1/(sin^2theta))  ..........(∵ costheta = 1/sectheta "and"  sintheta = 1/(cosectheta))` 

`=1/(1+sin^2theta) + 1/(1+cos^2theta) + cos^2 theta/(1+cos^2theta) + sin^2theta/(1+sin^2theta)` 

Taking L. C. M

`= ((1+ cos^2theta) + (1+ sin^2theta) + (1 +sin^2theta)(cos^2theta) + (sin^2theta) (1+ cos^2theta))/((1+sin^2theta) (1+cos^2theta))`

`= (1+ cos^2theta +1 + sin^2theta + cos^2theta + sin^2theta cos^2theta +sin^2theta + sin^2thetacos^2theta)/((1+sin^2theta) (1+cos^2theta)) ..(∵ sin^2theta + cos^2theta = 1)`

`= (4+2sin^2thetacos^2theta)/(1+ sin^2theta + cos^2theta + sin^2thetacos^2theta)`

` = (4+2 sin^2thetacos^2theta)/(2+sin^2thetacos^2theta)`

Taking 2 as common factor

`= (2(2+ sin^2thetacos^2theta))/(2+sin^2thetacos^2theta) = 2.`

R. H. S
Hence, proved

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) All India (Set 2)

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`


Without using trigonometric tables, prove that:

tan 71° − cot 19° = 0


Without using trigonometric tables, prove that:

cosec272° − tan218° = 1


Without using trigonometric tables, prove that:

cos257° − sin233° = 0


Prove that:

`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec"  31^circ = 2`


Prove that:

`(2  "sin"  68^circ)/(cos 10^circ )- (2  cot 15^circ)/(5 tan 75^circ) = ((3  tan 45^circ t  an 20^circ  tan 40^circ tan 50^circ tan 70^circ)) /5= 1` 


Prove that:

sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1


Prove that:

\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]


Prove that:

cos1° cos2° cos3° ... cos180° = 0


If A, B  and C are the angles of a  ΔABC, prove that tan `((C + "A")/2) = cot  B/2`


If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.


\[\frac{2}{3} {cosec}^2 58^\circ- \frac{2}{3}\cot58^\circ \tan32^\circ - \frac{5}{3}\tan13^\circ \tan37^\circ\tan45^\circ\tan53^\circ\tan77^\circ = - 1\]

Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`


A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]


Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.


If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`


From the trigonometric table, write the values of tan 45°48'.


Given that sin θ = `a/b` then cos θ is equal to ______.


The maximum value of `1/(cosec alpha)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×