Advertisements
Advertisements
प्रश्न
Prove the following:
`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`
उत्तर
`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta)`
` = 1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+1/(cos^2theta)) + 1/(1+1/(sin^2theta)) ..........(∵ costheta = 1/sectheta "and" sintheta = 1/(cosectheta))`
`=1/(1+sin^2theta) + 1/(1+cos^2theta) + cos^2 theta/(1+cos^2theta) + sin^2theta/(1+sin^2theta)`
Taking L. C. M
`= ((1+ cos^2theta) + (1+ sin^2theta) + (1 +sin^2theta)(cos^2theta) + (sin^2theta) (1+ cos^2theta))/((1+sin^2theta) (1+cos^2theta))`
`= (1+ cos^2theta +1 + sin^2theta + cos^2theta + sin^2theta cos^2theta +sin^2theta + sin^2thetacos^2theta)/((1+sin^2theta) (1+cos^2theta)) ..(∵ sin^2theta + cos^2theta = 1)`
`= (4+2sin^2thetacos^2theta)/(1+ sin^2theta + cos^2theta + sin^2thetacos^2theta)`
` = (4+2 sin^2thetacos^2theta)/(2+sin^2thetacos^2theta)`
Taking 2 as common factor
`= (2(2+ sin^2thetacos^2theta))/(2+sin^2thetacos^2theta) = 2.`
R. H. S
Hence, proved
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
Without using trigonometric tables, prove that:
tan 71° − cot 19° = 0
Without using trigonometric tables, prove that:
cosec272° − tan218° = 1
Without using trigonometric tables, prove that:
cos257° − sin233° = 0
Prove that:
`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec" 31^circ = 2`
Prove that:
`(2 "sin" 68^circ)/(cos 10^circ )- (2 cot 15^circ)/(5 tan 75^circ) = ((3 tan 45^circ t an 20^circ tan 40^circ tan 50^circ tan 70^circ)) /5= 1`
Prove that:
sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1
Prove that:
\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]
Prove that:
cos1° cos2° cos3° ... cos180° = 0
If A, B and C are the angles of a ΔABC, prove that tan `((C + "A")/2) = cot B/2`
If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.
Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`
A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]
Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.
If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`
From the trigonometric table, write the values of tan 45°48'.
Given that sin θ = `a/b` then cos θ is equal to ______.
The maximum value of `1/(cosec alpha)` is ______.