हिंदी

Prove That: Sin θ Cos (90° - θ ) + Sin (90° - θ) Cos θ = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1

योग

उत्तर

LHS = sin θ cos (90° - θ) + sin (90° - θ) cosθ

= sin θ sin θ + cos θ cos θ

= sin2 θ + cos2 θ 

= 1 

= RHS

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१३]

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 5.1 | पृष्ठ ३१३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Without using trigonometric tables, evaluate :

`tan 27^circ/cot 63^circ`


Without using trigonometric tables, evaluate :

`cos 35^circ/sin 55^circ`


Without using trigonometric tables, evaluate :

`("cosec"  42^circ)/sec 48^circ`


Without using trigonometric tables, evaluate :

`cot 38^circ/tan 52^circ`


Without using trigonometric tables, prove that:

tan 71° − cot 19° = 0


Without using trigonometric tables, prove that:

cosec 80° − sec 10° = 0


Without using trigonometric tables, prove that:

cosec272° − tan218° = 1


Without using trigonometric tables, prove that:

cos257° − sin233° = 0


Without using trigonometric tables, prove that:

(sin 65° + cos 25°)(sin 65° − cos 25°) = 0


Prove that:

`(2  "sin"  68^circ)/(cos 10^circ )- (2  cot 15^circ)/(5 tan 75^circ) = ((3  tan 45^circ t  an 20^circ  tan 40^circ tan 50^circ tan 70^circ)) /5= 1` 


Prove that:

\[\frac{\sin\theta  \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta  \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]


Prove that:

cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]


If A, B  and C are the angles of a  ΔABC, prove that tan `((C + "A")/2) = cot  B/2`


A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]


Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.


Solve : Sin2θ - 3sin θ + 2 = 0 .


If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`


Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.


Using trigonometric table evaluate the following:
cos 64°42' - sin 42°20'


The maximum value of `1/(cosec alpha)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×