हिंदी

Without Using Trigonometric Tables, Prove That: (Sin 65° + Cos 25°)(Sin 65° − Cos 25°) = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Without using trigonometric tables, prove that:

(sin 65° + cos 25°)(sin 65° − cos 25°) = 0

योग

उत्तर

LHS = (sin 65° + cos 25°) (sin 65° − cos 25°) 

= `sin^2 65^circ - cos^2 25^circ`

= `sin^2 (90^circ - 25^circ) - cos^2 25^circ`

= `cos^2 25^circ - cos^2 25^circ`

= 0

= RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१२]

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 2.9 | पृष्ठ ३१२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Without using trigonometric tables, evaluate :

`sec 11^circ/("cosec"  79^circ)`


Without using trigonometric tables, evaluate :

`tan 27^circ/cot 63^circ`


Without using trigonometric tables, evaluate :

`cos 35^circ/sin 55^circ`


Without using trigonometric tables, prove that:

sin53° cos37° + cos53° sin37° = 1


Without using trigonometric tables, prove that:

sin35° sin55° − cos35° cos55° = 0


Prove that:

`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2  cos 70^circ "cosec"  20^circ = 0`


Prove that:

sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1


Prove that:

\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]


A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]


From the trigonometric table, write the values of cos 23°17'.


From the trigonometric table, write the values of tan 45°48'.


Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.


Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.


Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'


Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'


The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.


Given that sin θ = `a/b` then cos θ is equal to ______.


The maximum value of `1/(cosec alpha)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×