Advertisements
Advertisements
प्रश्न
Without using trigonometric tables, prove that:
(sin 65° + cos 25°)(sin 65° − cos 25°) = 0
उत्तर
LHS = (sin 65° + cos 25°) (sin 65° − cos 25°)
= `sin^2 65^circ - cos^2 25^circ`
= `sin^2 (90^circ - 25^circ) - cos^2 25^circ`
= `cos^2 25^circ - cos^2 25^circ`
= 0
= RHS
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate :
`sec 11^circ/("cosec" 79^circ)`
Without using trigonometric tables, evaluate :
`tan 27^circ/cot 63^circ`
Without using trigonometric tables, evaluate :
`cos 35^circ/sin 55^circ`
Without using trigonometric tables, prove that:
sin53° cos37° + cos53° sin37° = 1
Without using trigonometric tables, prove that:
sin35° sin55° − cos35° cos55° = 0
Prove that:
`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2 cos 70^circ "cosec" 20^circ = 0`
Prove that:
sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1
Prove that:
\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]
A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]
From the trigonometric table, write the values of cos 23°17'.
From the trigonometric table, write the values of tan 45°48'.
Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.
Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.
Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'
Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'
The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.
Given that sin θ = `a/b` then cos θ is equal to ______.
The maximum value of `1/(cosec alpha)` is ______.