हिंदी

Prove That: C O T θ Tan ( 90 ° − θ ) − Sec ( 90 ° − θ ) C O S E C θ + √ 3 Tan 12 ° Tan 60 ° Tan 78 ° = 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]

योग

उत्तर

\[ LHS = \frac{\sec\left( 90° - \theta \right) cosec\theta - \tan\left( 90°- \theta \right) \cot\theta + \cos^2 25° + \cos^2 65°}{3\tan27° \tan63°}\]
\[ = \frac{cosec\theta cosec\theta - \cot\theta \cot\theta + \sin^2 \left( 90° - 25°\right) + \cos^2 65°}{3\tan27°\cot\left( 90° - 63° \right)}\]
\[ = \frac{{cosec}^2 \theta - \cot^2 \theta + \sin^2 65°+ \cos^2 65°}{3\tan27° \cot27°}\]
\[ = \frac{1 + 1}{3 \times \tan27°\times \frac{1}{\tan27°}}\]
\[ = \frac{2}{3}\]
= RHS
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१३]

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 5.7 | पृष्ठ ३१३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

In the below given figure, a tower AB is 20 m high and BC, its shadow on the ground, is 20√3 m long. Find the sun’s altitude. 


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


Without using trigonometric tables, prove that:

sin35° sin55° − cos35° cos55° = 0


Without using trigonometric tables, prove that:

(sin72° + cos18°)(sin72° − cos18°) = 0


Prove that:

`(2  "sin"  68^circ)/(cos 10^circ )- (2  cot 15^circ)/(5 tan 75^circ) = ((3  tan 45^circ t  an 20^circ  tan 40^circ tan 50^circ tan 70^circ)) /5= 1` 


Prove that:

`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ  tan50^circ tan 80^circ) `


Prove that:

\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]


Prove that:

\[\frac{sin\theta  \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.


\[\frac{2}{3} {cosec}^2 58^\circ- \frac{2}{3}\cot58^\circ \tan32^\circ - \frac{5}{3}\tan13^\circ \tan37^\circ\tan45^\circ\tan53^\circ\tan77^\circ = - 1\]

Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`


Given that `tan (θ_1 + θ_2) = (tan θ_1 + tan θ_2)/(1 - tan θ_1 tan θ_2)` Find (θ1 + θ2) when tan θ1 = `1/2 and tan θ_2 = 1/3`.


Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).


If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`


From the trigonometric table, write the values of tan 45°48'.


Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.


Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'


Using trigonometric table evaluate the following:
cos 64°42' - sin 42°20'


`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`


If sin θ = 1, then the value of `1/2  sin(theta/2)`is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×