Advertisements
Advertisements
प्रश्न
Given that `tan (θ_1 + θ_2) = (tan θ_1 + tan θ_2)/(1 - tan θ_1 tan θ_2)` Find (θ1 + θ2) when tan θ1 = `1/2 and tan θ_2 = 1/3`.
उत्तर
We have,
tan θ1 = `1/2 and tan θ_2 = 1/3`
∴ `tan (θ_1 + θ_2) = (tan θ_1 + tan θ_2)/(1 - tan θ_1 tan θ_2)`
= `(1/2 + 1/3)/(1 - 1/2 xx 1/3)`
= `(5/6)/(1 - 1/6)`
= `tan (θ_1 + θ_2) = (5/6)/(5/6)`
= tan (θ1 + θ2) = 1
= θ1 + θ2 = 45°
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Without using trigonometric tables, evaluate :
`("cosec" 42^circ)/sec 48^circ`
Without using trigonometric tables, prove that:
cosec 80° − sec 10° = 0
Without using trigonometric tables, prove that:
sin248° + sin242° = 1
Prove that:
`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec" 31^circ = 2`
Prove that:
\[\frac{\sin\theta \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.
The maximum value of `1/(cosec alpha)` is ______.
If sin θ = 1, then the value of `1/2 sin(theta/2)`is ______.