Advertisements
Advertisements
प्रश्न
`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`
उत्तर
`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`
= `(0.3557 + 2.4340)/(0.8450 - 2.616)`
= `(2.7897)/(0.5834)`
= `(27897)/(5834)`
= 4.7818.
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, prove that:
cosec 80° − sec 10° = 0
Without using trigonometric tables, prove that:
cos257° − sin233° = 0
Without using trigonometric tables, prove that:
tan48° tan23° tan42° tan67° = 1
Prove that:
`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2 cos 70^circ "cosec" 20^circ = 0`
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.
A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]
Solve : Sin2θ - 3sin θ + 2 = 0 .
Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'
Given that sin θ = `a/b` then cos θ is equal to ______.