हिंदी

A Man in a Boat Rowing Away from a Lighthouse 100 M High Takes 2 Minutes to Change the Angle of Elevation of the Top of the Lighthouse from 60° to 30°. Find the Speed of the Boat in Metres per Minute - Mathematics

Advertisements
Advertisements

प्रश्न

A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]

योग

उत्तर

AB is a lighthouse of height 100m. Let the speed of boat be x metres per minute. And CD is the distance which man travelled to change the angle of elevation.

Therefore,
CD = 2x [Distance = speed x time]

tan(60°) = `("AB")/("BC")`

`sqrt3 = 100/"BC"`

`=> "BC" = 100/sqrt3`

tan(30°) = `"AB"/"BD"`

`=> 1/sqrt3 = 100/"BD"`

BD = 100`sqrt3`

CD = BD - BC

`2"x" = 100 sqrt3 - 100/sqrt3`

`2"x" = (300 - 100)/sqrt3`

`=> "x" = 200/(2sqrt3)`

`=> x = 100/sqrt3`

Using, 

`sqrt3 = 1.73`

`"x" = 100/1.73 = 57.80`

Hence, the speed of the boat is 57.80 metres per minute.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 30/1/1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate without using trigonometric tables, 

`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`


Without using trigonometrical tables, evaluate:

`cosec^2 57^circ - tan^2 33^circ + cos 44^circ cosec 46^circ - sqrt(2) cos 45^circ - tan^2 60^circ`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)` 

[Hint: Simplify LHS and RHS separately.] 


Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`


Without using trigonometric tables, prove that:

cos 81° − sin 9° = 0


Without using trigonometric tables, prove that:

tan 71° − cot 19° = 0


Without using trigonometric tables, prove that:

sin53° cos37° + cos53° sin37° = 1


Without using trigonometric tables, prove that:

tan48° tan23° tan42° tan67° = 1


Prove that:

`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec"  31^circ = 2`


Prove that:

`(2  "sin"  68^circ)/(cos 10^circ )- (2  cot 15^circ)/(5 tan 75^circ) = ((3  tan 45^circ t  an 20^circ  tan 40^circ tan 50^circ tan 70^circ)) /5= 1` 


Prove that:

\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]


If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.


\[\frac{2}{3} {cosec}^2 58^\circ- \frac{2}{3}\cot58^\circ \tan32^\circ - \frac{5}{3}\tan13^\circ \tan37^\circ\tan45^\circ\tan53^\circ\tan77^\circ = - 1\]

Solve : Sin2θ - 3sin θ + 2 = 0 .


Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.


`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`


Given that sin θ = `a/b` then cos θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×