Advertisements
Advertisements
प्रश्न
A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]
उत्तर
AB is a lighthouse of height 100m. Let the speed of boat be x metres per minute. And CD is the distance which man travelled to change the angle of elevation.
Therefore,
CD = 2x [Distance = speed x time]
tan(60°) = `("AB")/("BC")`
`sqrt3 = 100/"BC"`
`=> "BC" = 100/sqrt3`
tan(30°) = `"AB"/"BD"`
`=> 1/sqrt3 = 100/"BD"`
BD = 100`sqrt3`
CD = BD - BC
`2"x" = 100 sqrt3 - 100/sqrt3`
`2"x" = (300 - 100)/sqrt3`
`=> "x" = 200/(2sqrt3)`
`=> x = 100/sqrt3`
Using,
`sqrt3 = 1.73`
`"x" = 100/1.73 = 57.80`
Hence, the speed of the boat is 57.80 metres per minute.
संबंधित प्रश्न
Evaluate without using trigonometric tables,
`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`
Without using trigonometrical tables, evaluate:
`cosec^2 57^circ - tan^2 33^circ + cos 44^circ cosec 46^circ - sqrt(2) cos 45^circ - tan^2 60^circ`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)`
[Hint: Simplify LHS and RHS separately.]
Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`
Without using trigonometric tables, prove that:
cos 81° − sin 9° = 0
Without using trigonometric tables, prove that:
tan 71° − cot 19° = 0
Without using trigonometric tables, prove that:
sin53° cos37° + cos53° sin37° = 1
Without using trigonometric tables, prove that:
tan48° tan23° tan42° tan67° = 1
Prove that:
`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec" 31^circ = 2`
Prove that:
`(2 "sin" 68^circ)/(cos 10^circ )- (2 cot 15^circ)/(5 tan 75^circ) = ((3 tan 45^circ t an 20^circ tan 40^circ tan 50^circ tan 70^circ)) /5= 1`
Prove that:
\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]
If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.
Solve : Sin2θ - 3sin θ + 2 = 0 .
Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.
`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`
Given that sin θ = `a/b` then cos θ is equal to ______.