English

A Man in a Boat Rowing Away from a Lighthouse 100 M High Takes 2 Minutes to Change the Angle of Elevation of the Top of the Lighthouse from 60° to 30°. Find the Speed of the Boat in Metres per Minute - Mathematics

Advertisements
Advertisements

Question

A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]

Sum

Solution

AB is a lighthouse of height 100m. Let the speed of boat be x metres per minute. And CD is the distance which man travelled to change the angle of elevation.

Therefore,
CD = 2x [Distance = speed x time]

tan(60°) = `("AB")/("BC")`

`sqrt3 = 100/"BC"`

`=> "BC" = 100/sqrt3`

tan(30°) = `"AB"/"BD"`

`=> 1/sqrt3 = 100/"BD"`

BD = 100`sqrt3`

CD = BD - BC

`2"x" = 100 sqrt3 - 100/sqrt3`

`2"x" = (300 - 100)/sqrt3`

`=> "x" = 200/(2sqrt3)`

`=> x = 100/sqrt3`

Using, 

`sqrt3 = 1.73`

`"x" = 100/1.73 = 57.80`

Hence, the speed of the boat is 57.80 metres per minute.

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 30/1/1

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

In the below given figure, a tower AB is 20 m high and BC, its shadow on the ground, is 20√3 m long. Find the sun’s altitude. 


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


Without using trigonometric tables, evaluate :

`("cosec"  42^circ)/sec 48^circ`


Without using trigonometric tables, prove that:

cosec 80° − sec 10° = 0


Without using trigonometric tables, prove that:

cos275° + cos215° = 1


Without using trigonometric tables, prove that:

(sin 65° + cos 25°)(sin 65° − cos 25°) = 0


Without using trigonometric tables, prove that:

sin53° cos37° + cos53° sin37° = 1


Without using trigonometric tables, prove that:

sin35° sin55° − cos35° cos55° = 0


Without using trigonometric tables, prove that:

tan48° tan23° tan42° tan67° = 1


Prove that:

`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec"  31^circ = 2`


Prove that:

sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1


Prove that:

\[\frac{\sin\theta  \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta  \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]


Prove that:

\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]


If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.  


\[\frac{2}{3} {cosec}^2 58^\circ- \frac{2}{3}\cot58^\circ \tan32^\circ - \frac{5}{3}\tan13^\circ \tan37^\circ\tan45^\circ\tan53^\circ\tan77^\circ = - 1\]

From the trigonometric table, write the values of tan 45°48'.


Prove that:

`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A


Prove that:

`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`


If sin θ = 1, then the value of `1/2  sin(theta/2)`is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×