English

If Sec2a = Cosec(A - 42°), Where 2a is an Acute Angle, Then Find the Value of A. - Mathematics

Advertisements
Advertisements

Question

If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.  

Sum

Solution

\[\sec2A = cosec\left( A - 42^\circ \right)\]

\[ \Rightarrow cosec\left( 90^\circ- 2A \right) = cosec\left( A - 42^\circ \right)\]

Comparing both sides, we get

\[90^\circ- 2A = A - 42^\circ\]

\[ \Rightarrow 2A + A = 90^\circ + 42^\circ\]

\[ \Rightarrow 3A = 132^\circ\]

\[ \Rightarrow A = \frac{132^\circ}{3}\]

\[ \therefore A = 44^\circ\]

Hence, the value of A is 44° 

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Trigonometric Ratios of Complementary Angles - Exercises [Page 314]

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 11 | Page 314

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)` 

[Hint: Simplify LHS and RHS separately.] 


Without using trigonometric tables, evaluate :

`tan 27^circ/cot 63^circ`


Without using trigonometric tables, evaluate :

`cos 35^circ/sin 55^circ`


Without using trigonometric tables, prove that:

cosec 80° − sec 10° = 0


Without using trigonometric tables, prove that:

cosec272° − tan218° = 1


Without using trigonometric tables, prove that:

sin248° + sin242° = 1


Without using trigonometric tables, prove that:

cos257° − sin233° = 0


Prove that:

`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec"  31^circ = 2`


If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.


Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`


A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]


From trigonometric table, write the values of sin 37°19'.


Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.


Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'


`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`


The maximum value of `1/(cosec alpha)` is ______.


Prove that:

`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`


If sin θ = 1, then the value of `1/2  sin(theta/2)`is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×