Advertisements
Advertisements
Question
If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.
Solution
\[\sec2A = cosec\left( A - 42^\circ \right)\]
\[ \Rightarrow cosec\left( 90^\circ- 2A \right) = cosec\left( A - 42^\circ \right)\]
Comparing both sides, we get
\[90^\circ- 2A = A - 42^\circ\]
\[ \Rightarrow 2A + A = 90^\circ + 42^\circ\]
\[ \Rightarrow 3A = 132^\circ\]
\[ \Rightarrow A = \frac{132^\circ}{3}\]
\[ \therefore A = 44^\circ\]
Hence, the value of A is 44°
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)`
[Hint: Simplify LHS and RHS separately.]
Without using trigonometric tables, evaluate :
`tan 27^circ/cot 63^circ`
Without using trigonometric tables, evaluate :
`cos 35^circ/sin 55^circ`
Without using trigonometric tables, prove that:
cosec 80° − sec 10° = 0
Without using trigonometric tables, prove that:
cosec272° − tan218° = 1
Without using trigonometric tables, prove that:
sin248° + sin242° = 1
Without using trigonometric tables, prove that:
cos257° − sin233° = 0
Prove that:
`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec" 31^circ = 2`
If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.
Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`
A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]
From trigonometric table, write the values of sin 37°19'.
Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.
Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'
`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`
The maximum value of `1/(cosec alpha)` is ______.
Prove that:
`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`
If sin θ = 1, then the value of `1/2 sin(theta/2)`is ______.