Advertisements
Advertisements
Question
Prove that:
`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`
Solution
LHS = `(sin^3 theta + cos^3 theta)/(sin theta + cos theta)`
`= ((sin theta + cos theta)(sin^2 theta - sin theta cos theta + cos^2 theta))/(sin theta + cos theta)` ...[∵ a3 + b3 = (a + b)(a2 - ab + b2)]
= sin2 θ - sin θ cos θ + cos2 θ
= 1 - sin θ cos θ ...[sin2 θ + cos2 θ = 1]
= RHS
Hence Proved.
APPEARS IN
RELATED QUESTIONS
In the below given figure, a tower AB is 20 m high and BC, its shadow on the ground, is 20√3 m long. Find the sun’s altitude.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
Without using trigonometric tables, evaluate :
`sec 11^circ/("cosec" 79^circ)`
Without using trigonometric tables, evaluate :
`cos 35^circ/sin 55^circ`
Without using trigonometric tables, prove that:
(sin 65° + cos 25°)(sin 65° − cos 25°) = 0
Prove that:
`(2 "sin" 68^circ)/(cos 10^circ )- (2 cot 15^circ)/(5 tan 75^circ) = ((3 tan 45^circ t an 20^circ tan 40^circ tan 50^circ tan 70^circ)) /5= 1`
Prove that:
sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1
Using trigonometric table evaluate the following:
cos 64°42' - sin 42°20'
`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`
The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.