Advertisements
Advertisements
Question
Using trigonometric table evaluate the following:
cos 64°42' - sin 42°20'
Solution
cos 64°42' - sin 42°20'
= 0.4274 - 0.6734
= - 0.2460
= - 0.2460.
APPEARS IN
RELATED QUESTIONS
Evaluate without using trigonometric tables,
`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
Without using trigonometric tables, prove that:
cosec272° − tan218° = 1
Prove that:
`(2 "sin" 68^circ)/(cos 10^circ )- (2 cot 15^circ)/(5 tan 75^circ) = ((3 tan 45^circ t an 20^circ tan 40^circ tan 50^circ tan 70^circ)) /5= 1`
Prove that:
`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ tan50^circ tan 80^circ) `
Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).
Solve : Sin2θ - 3sin θ + 2 = 0 .
From the trigonometric table, write the values of cos 23°17'.
Prove that:
`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`