Advertisements
Advertisements
प्रश्न
Prove that:
`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`
उत्तर
LHS = `(sin^3 theta + cos^3 theta)/(sin theta + cos theta)`
`= ((sin theta + cos theta)(sin^2 theta - sin theta cos theta + cos^2 theta))/(sin theta + cos theta)` ...[∵ a3 + b3 = (a + b)(a2 - ab + b2)]
= sin2 θ - sin θ cos θ + cos2 θ
= 1 - sin θ cos θ ...[sin2 θ + cos2 θ = 1]
= RHS
Hence Proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
Without using trigonometric tables, prove that:
cos275° + cos215° = 1
Without using trigonometric tables, prove that:
tan266° − cot224° = 0
Without using trigonometric tables, prove that:
(sin 65° + cos 25°)(sin 65° − cos 25°) = 0
Prove that:
sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1
If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.
From the trigonometric table, write the values of cos 23°17'.
From the trigonometric table, write the values of tan 45°48'.
Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'
`(sin 40° + cos 50°)/(tan 38°20')`