English

Prove That: Cos 80 ∘ Sin 10 ∘ + Cos 59 ∘ Cosec 31 ∘ = 2 - Mathematics

Advertisements
Advertisements

Question

Prove that:

`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec"  31^circ = 2`

Sum

Solution

`"LHS"  = cos 80^circ/(sin 10^circ) + cos 59^circ "cosec"  31^circ `

`= (cos 80^circ)/cos(90^circ-10^circ) + sin (90^circ - 59^circ) "cosec"  31^circ`

`= 1 + "sin"31^circ`xx1/sin 31

= 1 + 1

= 2

= RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Trigonometric Ratios of Complementary Angles - Exercises [Page 313]

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 4.2 | Page 313

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Evaluate without using trigonometric tables, 

`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`


Without using trigonometrical tables, evaluate:

`cosec^2 57^circ - tan^2 33^circ + cos 44^circ cosec 46^circ - sqrt(2) cos 45^circ - tan^2 60^circ`


Without using trigonometric tables, evaluate :

`cos 35^circ/sin 55^circ`


Without using trigonometric tables, evaluate :

`("cosec"  42^circ)/sec 48^circ`


Without using trigonometric tables, evaluate :

`cot 38^circ/tan 52^circ`


Without using trigonometric tables, prove that:

cos 81° − sin 9° = 0


Without using trigonometric tables, prove that:

cos275° + cos215° = 1


Prove that:

`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ  tan50^circ tan 80^circ) `


Prove that:

\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]


Prove that:

\[\frac{\sin\theta  \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta  \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]


If A, B  and C are the angles of a  ΔABC, prove that tan `((C + "A")/2) = cot  B/2`


If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.


From the trigonometric table, write the values of tan 45°48'.


Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.


Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.


Using trigonometric table evaluate the following:
cos 64°42' - sin 42°20'


`(sin 40° + cos 50°)/(tan 38°20')`


The maximum value of `1/(cosec alpha)` is ______.


If sin θ = 1, then the value of `1/2  sin(theta/2)`is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×