English

If A, B and C Are the Angles of a δAbc, Prove that Tan ( C + a 2 ) = Cot B 2 - Mathematics

Advertisements
Advertisements

Question

If A, B  and C are the angles of a  ΔABC, prove that tan `((C + "A")/2) = cot  B/2`

Sum

Solution

In ΔABC 

A + B + c = 180° 

⇒ A + C = 180° - B      ..........(i)

Now,

LHS `= tan (("C"+"A")/2)`

`=tan ((180^circ - "B")/2)`           [Using (i)]

`= tan (90^circ - "B"/2)`

`= cot  "B"/2 `

= RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Trigonometric Ratios of Complementary Angles - Exercises [Page 314]

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 9 | Page 314

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`


Without using trigonometric tables, evaluate :

`cot 38^circ/tan 52^circ`


Without using trigonometric tables, prove that:

cos 81° − sin 9° = 0


Without using trigonometric tables, prove that:

tan 71° − cot 19° = 0


Without using trigonometric tables, prove that:

tan48° tan23° tan42° tan67° = 1


Prove that:

`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec"  31^circ = 2`


Prove that:

\[\frac{sin\theta  \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


Prove that:

cos1° cos2° cos3° ... cos180° = 0


If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.


If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.


A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]


Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).


If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`


From the trigonometric table, write the values of cos 23°17'.


`(sin 40° + cos 50°)/(tan 38°20')`


Prove that:

`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×