English

S I N θ Cos ( 90 ° − θ ) C O S θ Sin ( 90 ° − θ ) + C O S θ Sin ( 90 ° − θ ) S I N θ Cos ( 90 ° − θ ) - Mathematics

Advertisements
Advertisements

Question

Prove that:

\[\frac{sin\theta  \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]

Sum

Solution

\[\ LHS = \frac{\sec\left( 90° - \theta \right) cosec\theta - \tan\left( 90° - \theta \right) \cot\theta + \cos^2 25° + \cos^2 65°}{3\tan27° \tan63°}\]

\[ = \frac{cosec\theta cosec\theta - \cot\theta \cot\theta + \sin^2 \left( 90° - 25° \right) + \cos^2 65°}{3\tan27° \cot\left( 90° - 63° \right)}\]

\[ = \frac{{cosec}^2 \theta - \cot^2 \theta + \sin^2 65° + \cos^2 65°}{3\tan27°\cot27°}\]

\[ = \frac{1 + 1}{3 \times \tan27° \times \frac{1}{\tan27°}}\]

\[ = \frac{2}{3}\]

= RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Trigonometric Ratios of Complementary Angles - Exercises [Page 313]

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 5.6 | Page 313

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Without using trigonometrical tables, evaluate:

`cosec^2 57^circ - tan^2 33^circ + cos 44^circ cosec 46^circ - sqrt(2) cos 45^circ - tan^2 60^circ`


Without using trigonometric tables, evaluate :

`sec 11^circ/("cosec"  79^circ)`


Without using trigonometric tables, prove that:

cos 81° − sin 9° = 0


Without using trigonometric tables, prove that:

cosec 80° − sec 10° = 0


Without using trigonometric tables, prove that:

cos257° − sin233° = 0


Without using trigonometric tables, prove that:

(sin 65° + cos 25°)(sin 65° − cos 25°) = 0


Prove that:

`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ  tan50^circ tan 80^circ) `


Prove that:

\[\frac{\sin\theta  \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta  \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]


Prove that:

\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]


Prove that:

cos1° cos2° cos3° ... cos180° = 0


If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.  


If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.


If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.


A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]


Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).


Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.


Solve : Sin2θ - 3sin θ + 2 = 0 .


From the trigonometric table, write the values of tan 45°48'.


Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×