English

Without Using Trigonometric Tables, Prove That: Cos 81° − Sin 9° = 0 - Mathematics

Advertisements
Advertisements

Question

Without using trigonometric tables, prove that:

cos 81° − sin 9° = 0

Sum

Solution

LHS = cos 81° − sin 9° = 0

= `cos (90^circ - 9^circ) - sin 9^circ`

= `sin 9^circ - sin 9^circ`

= 0

= RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Trigonometric Ratios of Complementary Angles - Exercises [Page 312]

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 2.1 | Page 312

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Evaluate without using trigonometric tables, 

`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`


Without using trigonometrical tables, evaluate:

`cosec^2 57^circ - tan^2 33^circ + cos 44^circ cosec 46^circ - sqrt(2) cos 45^circ - tan^2 60^circ`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`


Without using trigonometric tables, evaluate :

`tan 27^circ/cot 63^circ`


Without using trigonometric tables, prove that:

(sin 65° + cos 25°)(sin 65° − cos 25°) = 0


Without using trigonometric tables, prove that:

sin53° cos37° + cos53° sin37° = 1


Without using trigonometric tables, prove that:

sin35° sin55° − cos35° cos55° = 0


Prove that:

\[\frac{sin\theta  \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


Prove that:

\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]


If A, B  and C are the angles of a  ΔABC, prove that tan `((C + "A")/2) = cot  B/2`


If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.  


If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.


\[\frac{2}{3} {cosec}^2 58^\circ- \frac{2}{3}\cot58^\circ \tan32^\circ - \frac{5}{3}\tan13^\circ \tan37^\circ\tan45^\circ\tan53^\circ\tan77^\circ = - 1\]

Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).


Solve : Sin2θ - 3sin θ + 2 = 0 .


From the trigonometric table, write the values of tan 45°48'.


Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'


Using trigonometric table evaluate the following:
cos 64°42' - sin 42°20'


Prove that:

`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×