Advertisements
Advertisements
प्रश्न
If A, B and C are the angles of a ΔABC, prove that tan `((C + "A")/2) = cot B/2`
उत्तर
In ΔABC
A + B + c = 180°
⇒ A + C = 180° - B ..........(i)
Now,
LHS `= tan (("C"+"A")/2)`
`=tan ((180^circ - "B")/2)` [Using (i)]
`= tan (90^circ - "B"/2)`
`= cot "B"/2 `
= RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Without using trigonometric tables, prove that:
cos 81° − sin 9° = 0
Without using trigonometric tables, prove that:
cosec 80° − sec 10° = 0
Without using trigonometric tables, prove that:
tan266° − cot224° = 0
Without using trigonometric tables, prove that:
(sin 65° + cos 25°)(sin 65° − cos 25°) = 0
Without using trigonometric tables, prove that:
sin53° cos37° + cos53° sin37° = 1
Without using trigonometric tables, prove that:
(sin72° + cos18°)(sin72° − cos18°) = 0
Prove that:
`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2 cos 70^circ "cosec" 20^circ = 0`
Prove that:
`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ tan50^circ tan 80^circ) `
Prove that:
\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.
A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]
Given that `tan (θ_1 + θ_2) = (tan θ_1 + tan θ_2)/(1 - tan θ_1 tan θ_2)` Find (θ1 + θ2) when tan θ1 = `1/2 and tan θ_2 = 1/3`.
Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.
From the trigonometric table, write the values of tan 45°48'.
Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'
`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`
The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.
The maximum value of `1/(cosec alpha)` is ______.