Advertisements
Advertisements
प्रश्न
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
उत्तर
We have
\[\cos2\theta = \sin4\theta\]
\[ \Rightarrow \sin\left( 90^\circ- 2\theta \right) = \sin4\theta\]
\[\text{Comparing both sides, we get}\]
\[90^\circ - 2\theta = 4\theta\]
\[ \Rightarrow 2\theta + 4\theta = 90^\circ\]
\[ \Rightarrow 6\theta = 90^\circ\]
\[ \Rightarrow \theta = \frac{90^\circ}{6}\]
\[ \therefore \theta = 15^\circ\]
Hence, the value of θ is 15°
APPEARS IN
संबंधित प्रश्न
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Evaluate tan 35° tan 40° tan 50° tan 55°
For any angle θ, state the value of: sin2 θ + cos2 θ
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA