Advertisements
Advertisements
प्रश्न
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
उत्तर
`(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
= `(4)/(sqrt(3))^2 + 1/(sqrt3/2)^2 - (1/sqrt(2))^2`
= `(4)/(3) + (1)/(3/4) - (1)/(2)`
= `(4)/(3) + (4)/(3) - (1)/(2)`
= `(8 + 8 -3)/(6)`
= `(13)/(6)`.
APPEARS IN
संबंधित प्रश्न
`(2 tan 30°)/(1+tan^2 30°)` = ______.
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following :
cosec 31° − sec 59°
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
Prove that:
sin 60° = 2 sin 30° cos 30°
If sin x = cos x and x is acute, state the value of x
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
find the value of: sin2 30° + cos2 30°+ cot2 45°
Prove that:
cos2 30° - sin2 30° = cos 60°
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Find the value of x in the following: `2sin x/(2)` = 1
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
Verify the following equalities:
1 + tan2 30° = sec2 30°
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).
Evaluate: sin2 60° + 2tan 45° – cos2 30°.