Advertisements
Advertisements
प्रश्न
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
उत्तर
`(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
= `((sqrt(3))^2 + 4 xx (1/sqrt(2))^2 + 3 xx (2/sqrt(3))^2 + 5 xx 0)/(2 + 2 - (sqrt(3))^2`
= `(3 + 4 xx (1)/(2) + 3 xx (4)/(3) + 0)/(2 + 2 - 3)`
= `(3 + 2 + 4)/(4 - 3)`
= 9.
APPEARS IN
संबंधित प्रश्न
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Evaluate the following :
cosec 31° − sec 59°
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
find the value of: cos2 60° + sin2 30°
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Prove that : sec245° - tan245° = 1
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to