Advertisements
Advertisements
प्रश्न
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
उत्तर
Since tan `"A" = (1)/(2), tan "B" = (1)/(3)`
tan(A + B) = `(tan"A" + tan"B")/(1 - tan"A" tan"B")`
⇒ tan(A + B) = `(1/2 + 1/3)/(1 - (1/2 xx 1/3))`
⇒ tan(A + B) = `(5/6)/(1 - 1/6)`
⇒ tan(A + B) = `(5/6)/(5/6)`
⇒ tan(A + B) = 1
⇒ tan(A + B) = tan45°
⇒ A + B = 45°.
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
If sin x = cos x and x is acute, state the value of x
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
find the value of: cos2 60° + sin2 30°
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
Find the value of x in the following: `sqrt(3)sin x` = cos x
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
If sin(A +B) = 1(A -B) = 1, find A and B.
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`