Advertisements
Advertisements
प्रश्न
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
उत्तर १
tan (A + B) = `sqrt(3)` = tan 60° and tan (A – B) = `1/sqrt(3)` = tan 30°
A + B = 60° ...(1)
A – B = 30° ...(2)
2A = 90°
⇒ A = 45°
Adding (1) and (2)
A + B = 60°
A – B = 30°
Subtract equation (2) from (1)
A + B = 60°
A – B = 30°
2B = 30°
⇒ B = 15°
Note: sin(A + B) = sin A cos B + cos A sin B
sin(A + B) ≠ sin A + sin B
उत्तर २
Here, tan (A – B) = `1/sqrt(3)`
⇒ tan (A – B) = tan 30° ...[∵ tan 30° = `1/sqrt(3)`]
⇒ (A – B) = 30° ...(i)
Also, tan (A + B) = `sqrt(3)`
⇒ tan (A + B) = tan 60° ...[∵ tan 60° = `sqrt(3)`]
⇒ A + B = 60° ...(ii)
Solving (i) and (ii), we get:
A = 45° and B = 15°
APPEARS IN
संबंधित प्रश्न
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
If sin x = cos y, then x + y = 45° ; write true of false
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
Find the value of x in the following: `sqrt(3)sin x` = cos x
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB