हिंदी

If tan (A + B) = 3 and tan (A – B) = 13; 0° < A + B ≤ 90°; A > B, find A and B. - Mathematics

Advertisements
Advertisements

प्रश्न

If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.

योग

उत्तर १

tan (A + B) = `sqrt(3)` = tan 60° and tan (A – B) = `1/sqrt(3)` = tan 30°

A + B = 60°     ...(1)

A – B = 30°     ...(2)

2A = 90°

⇒ A = 45°

Adding (1) and (2)

A + B = 60°

A – B = 30°

Subtract equation (2) from (1)

A + B = 60°

A – B = 30°

2B = 30°

⇒ B = 15°

Note: sin(A + B) = sin A cos B + cos A sin B

sin(A + B) ≠ sin A + sin B

shaalaa.com

उत्तर २

Here, tan (A – B) = `1/sqrt(3)`

⇒ tan (A – B) = tan 30°          ...[∵ tan 30° = `1/sqrt(3)`]

⇒ (A – B) = 30°           ...(i)

Also, tan (A + B) = `sqrt(3)`

⇒ tan (A + B) = tan 60°           ...[∵ tan 60° = `sqrt(3)`]

⇒ A + B = 60°                                 ...(ii)

Solving (i) and (ii), we get:

A = 45° and B = 15°

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction to Trigonometry - Exercise 8.2 [पृष्ठ १८७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 8 Introduction to Trigonometry
Exercise 8.2 | Q 3 | पृष्ठ १८७
आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.2 | Q 34 | पृष्ठ ४३
आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 6 T-Ratios of some particular angles
Exercises | Q 25

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º


`(1- tan^2 45°)/(1+tan^2 45°)` = ______


Evaluate the following :

`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`


Evaluate the following :

(sin 72° + cos 18°) (sin 72° − cos 18°)


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cot 85° + cos 75°


Prove that `sin 70^@/cos 20^@  + (cosec 20^@)/sec 70^@  -  2 cos 20^@ cosec 20^@ = 0`


Evaluate:

`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sec78° + cosec56°


If sin x = cos y, then x + y = 45° ; write true of false


Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B


If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`


If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`


Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos2


Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).


Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`


Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`


Find the value of x in the following: `sqrt(3)sin x` = cos x


If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB


If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.


In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×