Advertisements
Advertisements
प्रश्न
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
उत्तर
`cos 30° = sqrt3/2, sin 60° = sqrt3/2, cot 30° = sqrt3, sin 45° = 1/sqrt2, sec 45° = sqrt2` ...(I)
∴ `2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°` ...(From I)
`= 2/3 [(sqrt3/2)^4 - (1/sqrt2)^4]- 3[(sqrt3/2)^2 - (sqrt2)^2] + 1/4 (sqrt3)^2`
`= 2/3 [9/16 - 1/4] - 3[3/4 - 2] + [1/4 × 3]`
`= 2/3 [9/16 - 4/16] - 3[3/4 - 8/4] + 3/4`
`= 2/3 [(9 - 4)/16] - 3[(3 - 8)/4] + 3/4`
`= 2/3 [5/16] - 3[(- 5)/4] + 3/4`
`= 2/3 × 5/16 - 3 × (- 5)/4 + 3/4`
`= 5/24 + 15/4 + 3/4`
`= (5 + 90 + 18)/24`
`= 113/24`
APPEARS IN
संबंधित प्रश्न
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Prove that : cos60° . cos30° - sin60° . sin30° = 0
Find the value of x in the following: 2 sin3x = `sqrt(3)`
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)