Advertisements
Advertisements
प्रश्न
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
उत्तर
Sin (50 + θ) = cos (90 – (50 + θ)) = cos (40 – θ)
Tan 1 = tan (90° − 89°) ∙ cot 89°
Tan 10° = tan (90° - 80°) = cot 80°
Tan 20° = tan (90° - 70°) = cot 70°
⇒ cos (40° - θ) – cos (40 - θ) = cot 89° tan 89° . cot 80° . cot 70° tan 70°
Cot . tan θ = 1
= 1 ∙ 1 ∙ 1 = 1
LHS = RHS
Hence proved
APPEARS IN
संबंधित प्रश्न
sin 2A = 2 sin A is true when A = ______.
`(2 tan 30°)/(1-tan^2 30°)` = ______.
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
find the value of: tan 30° tan 60°
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`