Advertisements
Advertisements
प्रश्न
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
उत्तर
Given that A = 30°
LHS = `(cos^3 "A" – cos 3"A")/(cos "A") + (sin^3 "A" + sin 3"A")/(sin "A")`
= `(cos^3 30° – cos3 (30°))/(cos 30°) + (sin^3 30° + sin3 (30°))/(sin 30°)`
= `((sqrt3/2)^3 – 0)/(sqrt3/2) + ((1/2)^3 + 1)/(1/2)`
= `(sqrt3/2)^2 + (9/8)/(1/2)`
= `(3)/(4) + (9)/(4)`
= `(12)/(4)`
= 3
= RHS
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
If sin x = cos y, then x + y = 45° ; write true of false
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
find the value of: cos2 60° + sin2 30°
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Prove that : sec245° - tan245° = 1
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
If sin 30° = x and cos 60° = y, then x2 + y2 is
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.