हिंदी

Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°. - Mathematics

Advertisements
Advertisements

प्रश्न

Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.

योग

उत्तर

sec30° cosec60° + cos60° sin30°.

cos30° = `sqrt(3)/(2)`

⇒ sec30° = `(2)/sqrt(3)`

sin60° = `sqrt(3)/(2)`

⇒ cosec60° = `(2)/sqrt(3)`

cos60° = `(1)/(2) , sin30° = (1)/(2)`

sec30° cosec60° + cos60° sin30°

= `(2)/sqrt(3) xx (2)/sqrt(3) + (1)/(2) xx (1)/(2)`

= `(4)/(3) + (1)/(4)`

= `(16 + 3)/(12)`

= `(19)/(12)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 1.02

संबंधित प्रश्न

Evaluate the following expression:

(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`

(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`


If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º


Evaluate the following

`sec 11^@/(cosec 79^@)`


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

tan 65° + cot 49°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

sec 76° + cosec 52°


If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?


If A, B, C are the interior angles of a triangle ABC, prove that

`tan ((C+A)/2) = cot  B/2`


Prove that  tan 20° tan 35° tan 45° tan 55° tan 70° = 1


Evaluate: `(3 cos 55^@)/(7 sin 35^@) -  (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan  85^@))`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sin67° + cos75° 


Prove that:

sin 60° cos 30° + cos 60° . sin 30°  = 1


If sin x = cos x and x is acute, state the value of x


Evaluate: 

`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°


If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B


find the value of: cos2 60° + sec2 30° + tan2 45°


find the value of :

`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`


Prove that:

cosec2 45°  - cot2 45°  = 1


prove that:

tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`


secθ . Cot θ= cosecθ ; write true or false


Evaluate : 

`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.


Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B


Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.


Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos2


Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`


Find the value of x in the following: `2sin  x/(2)` = 1


If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB


Prove the following:

`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×