Advertisements
Advertisements
प्रश्न
Find the value of x in the following: `2sin x/(2)` = 1
उत्तर
`2sin x/(2)` = 1
⇒ `sin x/(2) = (1)/(2)`
⇒ `sin x/(2)` = sin30°
⇒ `x/(2)` = 30°
⇒ x = 60°.
APPEARS IN
संबंधित प्रश्न
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
find the value of: cosec2 60° - tan2 30°
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Evaluate: sin2 60° + 2tan 45° – cos2 30°.