हिंदी

Find the value of x in the following: 2 sin x 2 = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of x in the following: `2sin  x/(2)` = 1

योग

उत्तर

`2sin  x/(2)` = 1

⇒ `sin  x/(2) = (1)/(2)`

⇒ `sin  x/(2)` = sin30°

⇒ `x/(2)` = 30°
⇒ x  = 60°.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 8.2

संबंधित प्रश्न

Find the value of θ in each of the following :

(i) 2 sin 2θ = √3      (ii) 2 cos 3θ = 1


Evaluate the following:

`(sin 30° +  tan 45° –  cosec  60°)/(sec 30° +  cos 60° +  cot 45°)`


Evaluate the following:

`(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° +  cos^2 30°)`


State whether the following is true or false. Justify your answer.

The value of sinθ increases as θ increases.


Evaluate the following :

`cos 19^@/sin 71^@`


Evaluate the following :

`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`


Express cos 75° + cot 75° in terms of angles between 0° and 30°.


Prove that sin 48° sec 42° + cos 48° cosec 42° = 2


Prove that `cos 80^@/sin 10^@  + cos 59^@ cosec 31^@ = 2`


Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`


Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of sin 60o


If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B


find the value of: cosec2 60° - tan2 30°


find the value of :

3sin2 30° + 2tan2 60° - 5cos2 45°


Prove that:

3 cosec2 60°  - 2 cot2 30°  + sec2 45°  = 0


If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.


Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B


Given A = 60° and B = 30°,

prove that: tan (A - B) = `(tan"A"  –  tan"B")/(1 + tan"A".tan"B")`


If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B


Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`


Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B


In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB


If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.


Verify the following equalities:

cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×