Advertisements
Advertisements
प्रश्न
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
उत्तर
Cos 80° = cos (90° - 10°) = sin 10°
`=> sin 10^@/sin 10^@ + sin 31^@ cosec 31^@`
= 1 + 1 = 2 `[∵ sin theta cosec theta = 1]`
Hence proved
APPEARS IN
संबंधित प्रश्न
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
find the value of: sin2 30° + cos2 30°+ cot2 45°
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°