Advertisements
Advertisements
प्रश्न
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
उत्तर
Given A = 60° and B = 30°
LHS = cos(A+B)
= cos(60° + 30°)
= cos90°
=0
RHS = cos A cos B – sin A sin B
= cos 60° cos 30° – sin 60° sin 30°
= `(1)/(2) (sqrt3)/(2) – (sqrt3)/(2) (1)/(2)`
=`(sqrt3)/(4) – (sqrt3)/(4)`
= 0
LHS = RHS
APPEARS IN
संबंधित प्रश्न
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
`(2 tan 30°)/(1-tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Evaluate the following :
cosec 31° − sec 59°
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
If sin x = cos x and x is acute, state the value of x
find the value of: sin2 30° + cos2 30°+ cot2 45°
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Prove that : sec245° - tan245° = 1
Find the value of x in the following: 2 sin3x = `sqrt(3)`
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`
Evaluate: sin2 60° + 2tan 45° – cos2 30°.