English

Given A = 60° and B = 30°, prove that : cos (A + B) = cos A cos B - sin A sin B - Mathematics

Advertisements
Advertisements

Question

Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B

Sum

Solution

Given A = 60° and B = 30°

LHS = cos(A+B)
= cos(60° + 30°)
= cos90°
=0

RHS = cos A cos B – sin A sin B
= cos 60° cos 30° – sin 60° sin 30°

= `(1)/(2) (sqrt3)/(2) – (sqrt3)/(2) (1)/(2)`

=`(sqrt3)/(4) – (sqrt3)/(4)`

= 0
LHS  = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [Page 293]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 1.2 | Page 293

RELATED QUESTIONS

Show that tan 48° tan 23° tan 42° tan 67° = 1


Evaluate the following :

(sin 72° + cos 18°) (sin 72° − cos 18°)


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cos 78° + sec 78°


Prove that  tan 20° tan 35° tan 45° tan 55° tan 70° = 1


Prove that `cos 80^@/sin 10^@  + cos 59^@ cosec 31^@ = 2`


Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@  - 4 cos 50^@ cosec 40^@`


Evaluate tan 35° tan 40° tan 50° tan 55°


Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`


Prove that

cosec (67° + θ) − sec (23° − θ) = 0


If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of sin 60o


Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B


find the value of :

`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`


find the value of :

3sin2 30° + 2tan2 60° - 5cos2 45°


Prove that:

`((tan60°  + 1)/(tan 60°  – 1))^2 = (1+ cos 30°) /(1– cos 30°) `


For any angle θ, state the value of: sin2 θ + cos2 θ


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of  `(2)/(tan 30°)`


If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A


If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`


Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`


If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA


If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.


If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.


Verify the following equalities:

1 + tan2 30° = sec2 30°


Find the value of the following:

(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×