Advertisements
Advertisements
Question
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
Solution
sin 60° = `(sqrt3)/(2) = (1.732)/(2) = 0.87`
APPEARS IN
RELATED QUESTIONS
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
sin 2A = 2 sin A is true when A = ______.
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
Prove that:
cosec2 45° - cot2 45° = 1
For any angle θ, state the value of: sin2 θ + cos2 θ
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Find the value of x in the following: `sqrt(3)sin x` = cos x
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10