Advertisements
Advertisements
Question
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
Solution
tan 45° = 1, cosec 30° = 2, sec 60° = 2, cot 45° = 1, tan 45°, sin 90° = 1, cos 0° = 1
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ) = 1/2 + 2/1 - (5(1))/(2(1))`
= `1/2 + 2/1 - 5/2`
= `(1 + 4 - 5)/2`
= `0/2`
= 0
APPEARS IN
RELATED QUESTIONS
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
Evaluate the following
`sec 11^@/(cosec 79^@)`
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
secθ . Cot θ= cosecθ ; write true or false
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
If sin(A +B) = 1(A -B) = 1, find A and B.