Advertisements
Advertisements
Question
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
Solution
sin 90° = 1, cos 60° = `1/2`, cos 45° = `1/sqrt(2)`, sin 30° = `1/2`, cos 0° = 1
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
= `(1 + 1/2 + 1/sqrt(2)) xx (1/1 + 1 - 1/sqrt(2))`
= `((2sqrt(2) + sqrt(2) + 2)/(2sqrt(2))) xx ((sqrt(2) + 2sqrt(2) - 2)/(2sqrt(2)))`
= `((3sqrt(2) + 2)/(2sqrt(2))) xx ((3sqrt(2) - 2)/(2sqrt(2)))`
= `((3sqrt(2))^2 - (2)^2)/8`
= `(9(2) - 4)/8`
= `(18 - 4)/8`
= `14/8`
= `7/4`
APPEARS IN
RELATED QUESTIONS
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
find the value of: cos2 60° + sin2 30°
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
If sin(A +B) = 1(A -B) = 1, find A and B.
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to