Advertisements
Advertisements
Question
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Solution
tan 7° tan 23° tan 60° tan (90° - 23) tan (90° - 7°)
⇒ tan 7° tan 23° tan 60° cot 23° tan 60°
`1 xx 1 xx sqrt3 = sqrt3`
APPEARS IN
RELATED QUESTIONS
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
find the value of: sin2 30° + cos2 30°+ cot2 45°
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Find the value of x in the following: 2 sin3x = `sqrt(3)`
Find the value of x in the following: `2sin x/(2)` = 1
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
If 2 sin 2θ = `sqrt(3)` then the value of θ is