English

Find the value of x in the following: 2 sin3x = √ 3 - Mathematics

Advertisements
Advertisements

Question

Find the value of x in the following:  2 sin3x = `sqrt(3)`

Sum

Solution

2 sin3x = `sqrt(3)`

⇒ sin3x = `sqrt(3)/(2)`
⇒ sin3x = sin 60°
⇒ 3x = 60°
⇒ x = 20°.

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 8.1

RELATED QUESTIONS

Evaluate the following in the simplest form:

sin 60° cos 30° + cos 60° sin 30°


Show that:

(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`

(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`


Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º


State whether the following is true or false. Justify your answer.

The value of sinθ increases as θ increases.


State whether the following is true or false. Justify your answer.

The value of cos θ increases as θ increases.


Evaluate cos 48° − sin 42°


Evaluate the following :

`tan 10^@/cot 80^@`


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

tan 65° + cot 49°


Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°


Evaluate: `(3 cos 55^@)/(7 sin 35^@) -  (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan  85^@))`


Prove that

tan (55° − θ) − cot (35° + θ) = 0


Prove that:

sin 60° cos 30° + cos 60° . sin 30°  = 1


find the value of: sin2 30° + cos2 30°+ cot2 45°


Prove that:

cos2 30°  - sin2 30° = cos 60°


Prove that:

4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2


If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.


If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`


Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.


Prove that : sec245° - tan245° = 1


Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°


If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.


If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.


Verify the following equalities:

sin 30° cos 60° + cos 30° sin 60° = sin 90°


Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°


The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is


Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Evaluate: `(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×