Advertisements
Advertisements
Question
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
Solution
LHS =sin 60° cos 30° + cos 60°. sin 30°
= `(sqrt3)/(2) (sqrt3)/(2) + (1)/(2) (1)/(2) = (3)/(4) + (1)/(4) = 1 = RHS`
APPEARS IN
RELATED QUESTIONS
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate cos 48° − sin 42°
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
Find the value of:
tan2 30° + tan2 45° + tan2 60°
If sin x = cos x and x is acute, state the value of x
find the value of: tan 30° tan 60°
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
Prove that:
cosec2 45° - cot2 45° = 1
Prove that:
cos2 30° - sin2 30° = cos 60°
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
If sin(A +B) = 1(A -B) = 1, find A and B.
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10