Advertisements
Advertisements
Question
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10
Solution
`2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10
`\implies 2(2)^2 + x(sqrt(3)/2)^2 - 3/4(1/sqrt(3))^2` = 10
`\implies 2(4) + x(3/4) - 3/4(1/3)` = 10
`\implies 8 + x(3/4) - 1/4` = 10
`\implies` 32 + x(3) – 1 = 40
`\implies` 3x = 9
`\implies` x = 3
APPEARS IN
RELATED QUESTIONS
sin 2A = 2 sin A is true when A = ______.
Show that tan 48° tan 23° tan 42° tan 67° = 1
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Find the value of:
tan2 30° + tan2 45° + tan2 60°
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.