Advertisements
Advertisements
प्रश्न
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10
उत्तर
`2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10
`\implies 2(2)^2 + x(sqrt(3)/2)^2 - 3/4(1/sqrt(3))^2` = 10
`\implies 2(4) + x(3/4) - 3/4(1/3)` = 10
`\implies 8 + x(3/4) - 1/4` = 10
`\implies` 32 + x(3) – 1 = 40
`\implies` 3x = 9
`\implies` x = 3
APPEARS IN
संबंधित प्रश्न
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`cos 19^@/sin 71^@`
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
The value of 5 sin2 90° – 2 cos2 0° is ______.