Advertisements
Advertisements
प्रश्न
Without using tables, evaluate the following: tan230° + tan260° + tan245°
उत्तर
tan230° + tan260° + tan245°
tan30° = `(1)/sqrt(3)`
tan60° = `sqrt(3)`
tan45° = 1
tan230° + tan260° + tan245°
= `(1/sqrt(3))^2 + (sqrt(3))^2 + 1`
= `(1)/(3) + 3 + 1`
= `(1 + 9 + 3)/(3)`
= `(13)/(3)`.
APPEARS IN
संबंधित प्रश्न
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
`(2 tan 30°)/(1-tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Evaluate tan 35° tan 40° tan 50° tan 55°
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Prove that:
sin 60° = 2 sin 30° cos 30°
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
find the value of: tan 30° tan 60°
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
Prove that:
cosec2 45° - cot2 45° = 1
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
If sin(A +B) = 1(A -B) = 1, find A and B.
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to