Advertisements
Advertisements
प्रश्न
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
उत्तर
LHS = `4(sin^4 30°+ cos^4 60°)- 3(cos^2 45° – sin^2 90°)`
= `4[(1/2)^4 + (1/2)^4] – 3[(1/sqrt2)^2 + (1)^4]`
= `4[ (1)/(16) + (1)/(16) ] – 3[ (1)/(2) – 1]`
= `(4 xx 2 )/(16) + 3 xx (1)/(2)`
= 2
RHS = 2
LHS = RHS
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
sin 2A = 2 sin A is true when A = ______.
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
Find the value of:
tan2 30° + tan2 45° + tan2 60°
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
If sin x = cos x and x is acute, state the value of x
find the value of: cos2 60° + sin2 30°
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
Verify the following equalities:
1 + tan2 30° = sec2 30°
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.