हिंदी

Prove that: 4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2

योग

उत्तर

LHS = `4(sin^4 30°+  cos^4 60°)- 3(cos^2 45° –  sin^2 90°)`

= `4[(1/2)^4 + (1/2)^4] – 3[(1/sqrt2)^2 + (1)^4]`

= `4[ (1)/(16) + (1)/(16) ] – 3[ (1)/(2) – 1]`

= `(4 xx 2 )/(16) + 3 xx (1)/(2)`

= 2 

RHS = 2

LHS = RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [पृष्ठ २९१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 6.2 | पृष्ठ २९१

संबंधित प्रश्न

Evaluate the following:

`(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° +  cos^2 30°)`


`(1- tan^2 45°)/(1+tan^2 45°)` = ______


sin 2A = 2 sin A is true when A = ______.


State whether the following is true or false. Justify your answer.

sin (A + B) = sin A + sin B


Evaluate the following :

sin 35° sin 55° − cos 35° cos 55°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

tan 65° + cot 49°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cos 78° + sec 78°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°


If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?


Prove that `sin 70^@/cos 20^@  + (cosec 20^@)/sec 70^@  -  2 cos 20^@ cosec 20^@ = 0`


Prove that `cos 80^@/sin 10^@  + cos 59^@ cosec 31^@ = 2`


Prove the following :

`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ -  theta)) + tan (90^@ - theta)/cot theta = 2`


Prove the following

 sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1


Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@  - 4 cos 50^@ cosec 40^@`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cosec54° + sin72°


Find the value of:

tan2 30° + tan2 45° + tan2 60°


Prove that:

sin 60° cos 30° + cos 60° . sin 30°  = 1


If sin x = cos x and x is acute, state the value of x


find the value of: cos2 60° + sin2 30°


Evaluate : 

`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.


Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B


If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.


If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`


Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`


Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°


Verify the following equalities:

1 + tan2 30° = sec2 30°


Find the value of the following:

(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)


Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°


`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×