Advertisements
Advertisements
प्रश्न
Find the value of:
tan2 30° + tan2 45° + tan2 60°
उत्तर
tan2 30° + tan2 45° + tan2 60° = `(1/sqrt3)^2 + 1^2 + (sqrt3)^2`
= `(1)/(3) + 1+ 3`
= `(13)/(3)`
= `4(1)/(3)`
APPEARS IN
संबंधित प्रश्न
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
Prove that:
cos2 30° - sin2 30° = cos 60°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Find the value of x in the following: `sqrt(3)sin x` = cos x
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
If sin 30° = x and cos 60° = y, then x2 + y2 is
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.